The Asymmetric One-Dimensional Constrained Ising Model: Rigorous Results
نویسنده
چکیده
We study a one-dimensional spin (interacting particle) system, with product Bernoulli(p) stationary distribution, in which a site can flip only when its left neighbor is in state +1. Such models have been studied in physics as simple exemplars of systems exhibiting slow relaxation. In our “East” model the natural conjecture is that the relaxation time τ(p), that is 1/(spectral gap), satisfies log τ(p) ∼ log (1/p) log 2 as p ↓ 0. We prove this up to a factor of 2. The upper bound uses the Poincaré comparison argument applied to a “wave” (long-range) comparison process, which we analyze by probabilistic techniques. Such comparison arguments go back to Holley (1984, 1985). The lower bound, which atypically is not easy, involves construction and analysis of a certain “coalescing random jumps” process.
منابع مشابه
بسط دمای بالای پذیرفتاری مدل آیزینگ شبکه کاگومه با برهمکنش نزدیکترین همسایهها
The Ising model is one of the simplest models describing the interacting particles. In this work, we calculate the high temperature series expansions of zero field susceptibility of ising model with ferromagnetic, antiferromagnetic and one antiferromagnetic interactions on two dimensional kagome lattice. Using the Pade´ approximation, we calculate the susceptibility of critical exponent of fer...
متن کاملرهیافت معادلات جریان در مدل آیزینگ کوانتمی یک بعدی
One dimensional quantum Ising model with nearest neighbor interaction in transverse magnetic field is one of the simplest spin models which undergo quantum phase transition. This model has been precisely solved using different methods. In this paper, we solve this model in uniform magnetic field -Jgσxn precisely using a new method called Continuous Unitary Transformations (CUT) or flow equation...
متن کاملMagnetic Properties in a Spin-1 Random Transverse Ising Model on Square Lattice
In this paper we investigate the effect of a random transverse field, distributed according to a trimodal distribution, on the phase diagram and magnetic properties of a two-dimensional lattice (square with z=4), ferromagnetic Ising system consisting of magnetic atoms with spin-1. This study is done using the effectivefield theory (EFT) with correlations method. The equations are derived using...
متن کاملSpontaneous magnetization of the Ising model on the Sierpinski carpet fractal , a rigorous result
We give a rigorous proof of the existence of spontaneous magnetization at finite temperature for the Ising spin model defined on the Sierpinski carpet fractal. The theorem is inspired by the classical Peierls argument for the two dimensional lattice. Therefore, this exact result proves the existence of spontaneous magnetization for the Ising model in low dimensional structures, i.e. structures ...
متن کاملRelationship between d - Dimensional Quanta ! Spin Systems and ( d + I ) - Dimensional Ising Systems - - Equivalence
The partition function of a quantal spin system is expressed by that of the Ising model, on the basis of the generalized Trotter formula. Thereby the ground state of the d-dimensional Ising model with a transverse field is proven to be equivalent to the (d+ 1) -dimensional Ising model at finite temperatures. A general relationship is established between the two partition functions of a general ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2002